Graph Theory: Search

Anton Gerdelan gerdela@scss.tcd.ie

Graph Traversal

- Visiting nodes in a graph (graph traversal)
- trickier than tree because cycles -> infinite loop
- Traversing a graph similar to finding a spanning tree
- add flag to each vertex to show if it has been visited yet

Depth First Search (DFS)

- mark all vertices as not visited
- for all vertices in graph, if vertex \mathbf{v} has not been visited then use recursive function DFS (v)
- DFS (v)
- Mark vertex \mathbf{v} as visited
- for all vertices connected to \mathbf{v}
- if \mathbf{v} has not been visited
- DFS (x)

1) mark all vertices as 0 , i choose vertex A

2) DFS (A) - mark as 1, choose from $\{\mathrm{F}, \mathrm{E}, \mathrm{C}\}$

3) F not visited - DFS (F) - mark as 1 no unvisited connections - return

4) back at A choose from $\{E, C\}$

5) $\operatorname{DFS}(\mathrm{E})$ - mark as 1, choose from $\{B, C\}$

6) $\operatorname{DFS}(\mathrm{B})$ - mark as 1, choose C

7) $\operatorname{DFS}(\mathrm{C})$-mark as 1 return

8) back at B

- all visited - return

9) back at E

- all visited - return

10) back at A

- all visited - return
recursion done

traversal sequence: A,F,E,B,C

- mark all vertices as not visited
- create an empty queue Q of vertices
- for all vertices in graph, if vertex \mathbf{v} has not been visited then use iterative function BFS(v) // "hello! i am not recursive"
- BES (v)
- Mark vertex vas visited
- add \mathbf{v} to \mathbf{Q}
- while Q is not empty
- remove front vertex, \mathbf{x}, from Q
- for all vertices, i, adjacent to \mathbf{x},
- if vertex \mathbf{i} has not been visited then mark as visited and add it to \mathbf{Q}

Queue (ADT)

- queue is first-in first-out (FIFO) data type
- (stack is LIFO)
- NB queue analogy is people joining a line. stack is a mechanical dish stacker (like in a buffet) push () pop() etc.
- using 'circular' array would be okay - keep wrap-around start and end indices - tricky
- a linked list might be easier to manage

\underline{x}
Q

-	starts empty
A	visit A, add to Q

E,C leave Q
E, C no unvisited adjacent
C leave Q
C,B visit adjacent, add to Q
B
leave Q
all nodes visited - halt
(if vertices in graph still unvisited - repeat for each)

traversal
sequence: A, F, E, C, B

BFS Recap

- BFS is very commonly used to solve lots of problems
- web-crawling / Internet / Wikipedia
- social network - contacts: "people you may know"
- BFS works on directed and undirected graphs
- Requires a queue
- Is not recursive

let's start at A
sequence visited

- mark ' A ' visited
- enqueue ' A '
sequence visited
A

- queue is not empty so:
- dequeue ' A '
sequence visited
- ' A ' is current vertex

A

- unvisited neighbours
(the frontier) is in grey

- mark each of these visited
- and add each to queue
sequence visited AFEC

- queue is not empty so:
- dequeue 'F'
- ' F ' is current vertex
sequence visited
AFEC
- no unvisited neighbours

- queue is not empty so:
- dequeue 'E'
- ' E ' is current vertex
sequence visited
AFEC
- unvisited neighbour in grey

- mark 'B' visited
- enqueue B
sequence visited
AFECB

- queue is not empty so:
- dequeue 'C'
- ' C ' is current vertex
sequence visited
AFECB
- no unvisited vertices

- queue is not empty so:
- dequeue 'B'
- ' B ' is current vertex
- no unvisited vertices
sequence visited
AFECB
- queue is empty
- halt

BFS vs DFS

- easiest to compare difference on a tree
- Anton: draw helpful diagram here to compare them
- visit sequence differs
- are you more likely to find your results earlier in a BFS or DFS sequence?
- implementation may affect sequence - e.g. order that all adjacent nodes are visited in BFS
- recursive function might need rewrite for large graphs
- Q. why?

Depth-First Search
[branch] recursion

Breadth-First Search

ABDECFG
ABCDEFG

Spanning Trees

- A spanning tree of graph \mathbf{G} consists of
- is a sub-graph - simplifies the graph for traversal
- all vertices in \mathbf{G}
- only some of the edges
- should be representable as a tree
- Edges are chosen so that new graph is still connected but is acyclic
- A graph can contain many spanning trees
- Q. can a graph that is not connected contain a ST?

Spanning Trees

If graph G is
T 1 is a spanning tree:

Minimum Cost Spanning Tree (MCST)

- A spanning tree with the lowest length is a MCST
- Different algorithms for finding a MCST
- Kruskal's Algorithm
- Prim's Algorithm
- Boruvka's Algorithm
- mixtures

Kruskal's Algorithm

- Joseph Kruskal, 1956
- This is one method for finding the MCST
- Greedy algorithm paradigm (short-sighted best choices)
- solve in stages - make optimal local choice for each stage
- hope this results close to a global optimum
- Start with empty spanning tree
- Add next lowest weighted edge to spanning tree, as long as no cycles are formed
- Repeat previous step until all edges have been considered

If graph G is

a) $A \cdots \cdots \cdots$
b) $A=B$

could also have chosen (B,E)
choose next lowest weight

cycle detected!

 can not add (B,E)nor (A,E)! nor (F,B)!

If graph G is

$$
\begin{aligned}
\text { MCST } & =2+3+5+10 \\
& =20
\end{aligned}
$$

MCSTs are not unique
easiest way to check for cycles in tree:
don't add an edge if both of its end points are already in the tree

