Graph Theory: Search

Anton Gerdelan <<u>gerdela@scss.tcd.ie</u>>

Graph Traversal

- Visiting nodes in a graph (graph traversal)
 - trickier than tree because cycles -> infinite loop
- Traversing a graph similar to finding a spanning tree
 - add flag to each vertex to show if it has been visited yet

Depth First Search (DFS)

- mark all vertices as **not visited**
- for all vertices in graph, if vertex **v** has not been visited then use **recursive** function DFS (v)
- DFS(v)
 - Mark vertex **v** as **visited**
 - for all vertices connected to \boldsymbol{v}
 - if **v** has not been visited
 - DFS(x)

1) mark all vertices as 0, i choose vertex A

3) F not visited - DFS (F) - mark as 1 no unvisited connections - **return**

2) DFS (A) - mark as 1, choose from {F, E, C}

4) back at A choose from {E, C}

5) DFS(E) - mark as 1, choose from {B, C}

6) DFS (B) - mark as 1, choose C

8) back at B - all visited - **return**

10) back at A - all visited - **return** recursion done

traversal sequence: A,F,E,B,C

Breadth First Search (BFS)

- mark all vertices as **not visited**
- create an empty **queue** *Q* of vertices
- for all vertices in graph, if vertex v has not been visited then use iterative function BFS(v) // "hello! i am not recursive"
- BFS(v)
 - Mark vertex **v** as **visited**
 - add ${\boldsymbol{v}}$ to ${\boldsymbol{Q}}$
 - while Q is not empty
 - remove front vertex, **x**, from Q
 - for all vertices, i, adjacent to x,
 - if vertex i has not been visited then mark as visited and add it to Q

- join() leave() front() is_empty()
- queue is first-in first-out (FIFO) data type
 - (stack is **LIFO**)
 - NB queue analogy is people joining a line. stack is a mechanical dish stacker (like in a buffet) push () pop() etc.
- using 'circular' array would be okay keep wrap-around start and end indices tricky
- a linked list might be easier to manage

Q -A -F,E,C E,C E, C C C,B B

Χ

А

А

F

F

Ε

Ε

С

- starts empty
- visit A, add to Q
 - leave Q
 - **visit** adjacents, add to Q leave Q
 - no unvisited adjacent
- leave Q
 - visit adjacent, add to Q
 - leave Q
 - all nodes visited halt

(if vertices in graph still unvisited - repeat for each)

traversal sequence: A, F, E, C, B

BFS Recap

- BFS is very commonly used to solve lots of problems
 - web-crawling / Internet / Wikipedia
 - social network contacts: "people you may know"
- BFS works on directed and undirected graphs
- Requires a queue
- Is not recursive

sequence visited

Α

• enqueue 'A'

- queue is not empty so:
 - dequeue 'A'
 - 'A' is current vertex
 - unvisited neighbours (the **frontier**) is in grey

sequence visited

А

sequence visited

AFEC

- mark each of these visited
- and add each to queue

- queue is not empty so:
 - dequeue 'F'
 - 'F' is current vertex
 - no unvisited neighbours

sequence visited AFEC

- queue is not empty so:
 - dequeue 'E'
 - 'E' is current vertex
 - unvisited neighbour in grey

sequence visited A F E C

AFECB

• enqueue B

- queue is not empty so:
 - dequeue 'C'
 - 'C' is current vertex
 - no unvisited vertices

sequence visited AFECB

- queue is not empty so:
 - dequeue 'B'
 - 'B' is current vertex
 - no unvisited vertices
- queue is empty
 - halt

ont end sequence visited AFECB

BFS vs DFS

- easiest to compare difference on a tree
 - Anton: draw helpful diagram here to compare them
- visit sequence differs
- are you more likely to find your results <u>earlier</u> in a BFS or DFS sequence?
- implementation may affect sequence e.g. order that all adjacent nodes are visited in BFS
- recursive function might need rewrite for large graphs
 - \cdot Q. why?

ABDECFG

$\mathsf{A} \mathsf{B} \mathsf{C} \mathsf{D} \mathsf{E} \mathsf{F} \mathsf{G}$

Spanning Trees

- A spanning tree of graph **G** consists of
 - is a sub-graph **simplifies** the graph for traversal
 - all vertices in **G**
 - only <u>some</u> of the edges
 - should be representable as a tree
- Edges are chosen so that new graph is still **connected** but is **acyclic**
- A graph can contain many spanning trees
- *Q. can a graph that is not <u>connected</u> contain a ST?*

Spanning Trees

T1 is a spanning tree:

Minimum Cost Spanning Tree (MCST)

- A spanning tree with the lowest **length** is a MCST
- Different algorithms for finding a MCST
 - Kruskal's Algorithm
 - Prim's Algorithm
 - Boruvka's Algorithm
 - mixtures

Kruskal's Algorithm

- Joseph Kruskal, 1956
- This is one method for finding the MCST
- **Greedy** algorithm paradigm (short-sighted best choices)
 - solve in stages make optimal local choice for each stage
 - hope this results close to a global optimum
- Start with empty spanning tree
- Add <u>next lowest</u> weighted edge to spanning tree, as long as <u>no cycles</u> are formed
- Repeat previous step until all edges have been considered

5

Ε

6

З

5

F

could also have chosen (B,E)

> choose next lowest weight

cycle detected! can not add (B,E)

nor (A,E)! nor (F,B)!

$$MCST = 2 + 3 + 5 + 10$$

= 20

MCSTs are not unique

easiest way to check for cycles in tree:

don't add an edge if both of its end points are already in the tree